About: Fusion energy gain factor     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFusion_energy_gain_factor

A fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven, or in some sources, scientific breakeven.

AttributesValues
rdfs:label
  • Factor de ganancia de energía de fusión (es)
  • Fusion energy gain factor (en)
  • Fattore di guadagno energetico da fusione (it)
  • エネルギー増倍率 (ja)
  • Коефіцієнт відтворення термоядерної енергії (uk)
  • 聚变能量增益因子 (zh)
rdfs:comment
  • エネルギー増倍率とは核融合エネルギー分野において、原子核融合反応を起こすために投入したエネルギーと核融合反応で発生したエネルギー比率を指す。Q値と呼ばれる。 Q=1のときを臨界プラズマ条件と呼ぶ。現在開発が進められているD-T核融合に於いてはプラズマ温度1億度C以上、密度1立方センチメートルあたり100兆個とし、さらに1秒間以上閉じ込めることが条件になる。JT-60UおよびJET(Joint European Torus)に於いてはこの条件を達成している。ただし、これは重水素のみのプラズマなどで、実際にエネルギーを増大させ、発電等をしたわけではない。 Qが∞になる、つまり外部からの投入エネルギー無しで核反応が継続する条件を自己点火条件と呼ぶ。D-T反応に於いては、エネルギーは高速中性子の運動エネルギーの形で取り出され、ヘリウムの運動エネルギーは温度の維持に使われるので、結果的にヘリウムの運動エネルギーが温度を維持できる程度起きる条件と言う事になる。 当初、ITERは自己点火条件を目標に設計されていたが、建設費用等に問題が出た事もあり、設計が見直され自己点火条件を視野に入れつつQ=5〜10程度を目標に設計がなされている。 (ja)
  • El factor de ganancia de energía de fusión o simplemente ganancia de energía de fusión, expresada normalmente como Q, es el cociente de la energía de fusión producida en un reactor de fusión nuclear respecto a la energía requerida para mantener el plasma en estado estacionario. Es decir, la relación entre la cantidad de energía que entra al sistema y la que éste genera. Se le denomina punto de equilibrio a la condición Q = 1. La potencia de calentamiento puede así relacionarse con la potencia de fusión (la que es generada por la reacción de fusión) por la siguiente ecuación: ​ (es)
  • A fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven, or in some sources, scientific breakeven. (en)
  • Il fattore di guadagno energetico da fusione, solitamente espresso con il simbolo Q, è il rapporto tra la potenza di fusione prodotta in un reattore a fusione nucleare e la potenza richiesta per mantenere il plasma in condizioni stazionarie. La condizione di Q = 1, quando la potenza sprigionata dalle reazioni di fusione è pari alla potenza di riscaldamento richiesta, è detta di pareggio o, in alcune fonti, di pareggio scientifico. (it)
  • Коефіціє́нт відтво́рення термоя́дерної ене́ргії (Q) — співвідношення загальної енергії, яка виділяється у процесі реакції керованого термоядерного синтезу, що зрівноважує загальну енергію витрачену на запуск та підтримання реакції. Позначається символом Q. Реакція термоядерного синтезу стає самодостатньою і незбитковою, коли Q ≥ 1. Щоб отримати коефіцієнт Q слід енергію, виділену в процесі термоядерної реакції поділити на енергію витрачену для розігріву плазми: Q = Pfusion/Pheat. (uk)
  • 聚变能量增益因子(英語:fusion energy gain factor),通常用符号Q表示,是核聚变反应所产生能量与维持反应器等离子体稳态的输入装置能量之比。当Q = 1 ,聚变反应所释放的功率等于维持反应所需的加热功率时, 称为收支平衡,在某些地方也被称为科学收支平衡。 自热是获得能量增益的关键,聚变反应释放出的部分能量可能被燃料重新捕获,从而导致自热。大多数聚变反应会至少在无法在等离子体中捕获的形式下释放一部分能量,因此Q = 1的系统无需外部加热即可冷却。使用典型聚变燃料时,在至少达到Q = 5之前,聚变反应堆中的自热预计不会达到反应堆输入功率。如果Q增加到Q = 5以上,自热的增加令反应堆不再需要外部加热输入能量以维持反应。在此之后,聚变反应开始自我维持,这种情形被称为聚变点火。点火后反应堆Q为无限大,通常被认为是聚变反应堆的理想设计情景。 截至2017年,Q的记录由英国的歐洲聯合環狀托卡马克反应堆(JET)保持,为Q =(16MW)/(24MW)≈ 0.67,在1997年首次达到。国际热核聚变实验反应堆(ITER)最初的设计是为了达到点火水平,但目前设计可达到Q = 10,用50兆瓦的输入热功率产生500兆瓦的聚变功率。推断收支平衡的最高记录则由日本的JT-60托卡马克反应堆保持,Qext = 1.25。 (zh)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/IvyMike2.jpg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • El factor de ganancia de energía de fusión o simplemente ganancia de energía de fusión, expresada normalmente como Q, es el cociente de la energía de fusión producida en un reactor de fusión nuclear respecto a la energía requerida para mantener el plasma en estado estacionario. Es decir, la relación entre la cantidad de energía que entra al sistema y la que éste genera. Se le denomina punto de equilibrio a la condición Q = 1. En un reactor de fusión se ha de mantener plasma a alta temperatura (del orden de 100 millones de Kelvin) para que pueda ocurrir una fusión nuclear. Parte de esta potencia viene de la fracción de energía contenida en el material cargado (plasma) fch de la energía de salida de la reacción de fusión Pfus. Esta potencia puede designarse como fchPfus. El resto de la potencia del sistema, Pheat llega de fuentes externas requeridas para calentar el plasma u otras funciones de control y mantenimiento. Esta potencia es perdida en varios procesos hacia los muros de la cámara de plasma. En la mayoría de los diseños de reactores, varias limitaciones resultan en la salida de este calor del reactor a relativamente baja temperatura, por lo que poco o nada de éste puede aprovecharse en la generación de potencia eléctrica. En estos reactores, la potencia eléctrica es producida a partir de la fracción de energía contenida en los neutrones (1 - fch)Pfus. Los neutrones no están contenidos por los campos magnéticos(en confinamiento magnético) ni en el plasma denso (en confinamiento inercial) pero son absorbidos por los muros o cobertura del núcleo del reactor. Debido a varias reacciones exotérmicas y endotérmicas, la cobertura puede tener una ganancia de energía unos puntos porcentuales por encima o por debajo de 100%, pero que será obviado aquí. La energía de los neutrones puede ser usada para calentar un medio como helio gaseoso o litio líquido a alta temperatura y usar a continuación este medio para producir electricidad a una eficiencia ηelec, tal que la potencia eléctrica Pelec = ηelec(1 - fch)Pfus. Una fracción de la potencia eléctrica es recirculada para realimentar los sistemas del reactor, frecirc. Se requiere potencia para iluminación, bombeo, producción de los campos magnéticos, etc., pero la mayor parte es usada para el calentamiento del pasma, por lo que podemos escribir Pheat = ηheatPelec, donde ηheat es la eficiencia con la que la potencia eléctrica es convertida al tipo de potencia requerida para calentar el plasma.​ La potencia de calentamiento puede así relacionarse con la potencia de fusión (la que es generada por la reacción de fusión) por la siguiente ecuación: El factor de ganancia de energía de fusión es definido como queda: ​ Para la reacción Deuterio-Tritio, fch = 0.2. Los valores de eficiencia dependen de detalles del diseño pero pueden hallarse en el rango ηheat = 0.7 y ηelec = 0.4. El objetivo de un reactor de fusión es producir energía, no recircularla, por lo que un diseño práctico debe tener frecirc = 0.2 aproximadamente. Un valor menor será mejor, pero tanto más difícil de conseguir. Usando estos valores podemos encontrar para un reactor al uso un valor Q = 22. Por supuesto, Q = 15 sería suficiente y Q = 30 podría ser alcanzable, pero este simple cálculo muestra la magnitud de la ganancia de energía requerida. Téngase en cuenta que para el experimento JET con un modelo Tokamak se consiguió Q = 0.7 < 1 y está previsto conseguirse un Q = 10 con el futuro ITER (también basado en Tokamak). En el proceso, existe un canal de pérdida de energía que es independiente del esquema de confinamiento (inercial, magnético, magnético-inercial...) y que resulta prácticamente imposible evitar, la radiación asociada al Bremsstrahlung. Al igual que la densidad de potencia de la fusión, la densidad de potencia de la Bremsstrahlung depende del cuadrado de la densidad del plasma, pero no crece tan rápidamente con la temperatura. Igualando las dos densidades de potencia, se puede determinar la menor temperatura para la que la potencia de fusión puede superar la de la Bremsstrahlung. Esta temperatura de ignición se encuentra alrededor de los 4 keV para la reacción D-T y sobre los 35 keV para la . (es)
  • A fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven, or in some sources, scientific breakeven. The energy given off by the fusion reactions may be captured within the fuel, leading to self-heating. Most fusion reactions release at least some of their energy in a form that cannot be captured within the plasma, so a system at Q = 1 will cool without external heating. With typical fuels, self-heating in fusion reactors is not expected to match the external sources until at least Q ≈ 5. If Q increases past this point, increasing self-heating eventually removes the need for external heating. At this point the reaction becomes self-sustaining, a condition called combustion, and is generally regarded as highly desirable for practical reactor designs. Ignition corresponds to infinite Q, in which case no energy input is required to start self sustaining fusion reactions in the plasma. Over time, several related terms have entered the fusion lexicon. Energy that is not captured within the fuel can be captured externally to produce electricity. That electricity can be used to heat the plasma to operational temperatures. A system that is self-powered in this way is referred to as running at engineering breakeven. Operating above engineering breakeven, a machine would produce more electricity than it uses and could sell that excess. One that sells enough electricity to cover its operating costs is sometimes known as economic breakeven. Additionally, fusion fuels, especially tritium, are very expensive, so many experiments run on various test gasses like hydrogen or deuterium. A reactor running on these fuels that reaches the conditions for breakeven, if tritium was introduced, would be operating at breakeven, and this theoretical threshold is referred to as extrapolated breakeven. As of 2021, the record for Q is held by the National Ignition Facility in the US, at Q = (1.35 MW)/(1.9 MW) ≈ 0.70, first attained in August 2021. The highest record for extrapolated breakeven was posted by the JT-60 device, with Qext = 1.25, slightly besting JET's earlier 1.14. ITER was originally designed to reach ignition, but is currently designed to reach Q = 10, producing 500 MW of fusion power from 50 MW of injected thermal power. (en)
  • エネルギー増倍率とは核融合エネルギー分野において、原子核融合反応を起こすために投入したエネルギーと核融合反応で発生したエネルギー比率を指す。Q値と呼ばれる。 Q=1のときを臨界プラズマ条件と呼ぶ。現在開発が進められているD-T核融合に於いてはプラズマ温度1億度C以上、密度1立方センチメートルあたり100兆個とし、さらに1秒間以上閉じ込めることが条件になる。JT-60UおよびJET(Joint European Torus)に於いてはこの条件を達成している。ただし、これは重水素のみのプラズマなどで、実際にエネルギーを増大させ、発電等をしたわけではない。 Qが∞になる、つまり外部からの投入エネルギー無しで核反応が継続する条件を自己点火条件と呼ぶ。D-T反応に於いては、エネルギーは高速中性子の運動エネルギーの形で取り出され、ヘリウムの運動エネルギーは温度の維持に使われるので、結果的にヘリウムの運動エネルギーが温度を維持できる程度起きる条件と言う事になる。 当初、ITERは自己点火条件を目標に設計されていたが、建設費用等に問題が出た事もあり、設計が見直され自己点火条件を視野に入れつつQ=5〜10程度を目標に設計がなされている。 (ja)
  • Il fattore di guadagno energetico da fusione, solitamente espresso con il simbolo Q, è il rapporto tra la potenza di fusione prodotta in un reattore a fusione nucleare e la potenza richiesta per mantenere il plasma in condizioni stazionarie. La condizione di Q = 1, quando la potenza sprigionata dalle reazioni di fusione è pari alla potenza di riscaldamento richiesta, è detta di pareggio o, in alcune fonti, di pareggio scientifico. L'energia sprigionata dalle reazioni di fusione può essere catturata all'interno del combustibile, portando all'autoriscaldamento. La maggior parte delle reazioni di fusione rilasciano almeno parte della loro energia in una forma che non può essere catturata all'interno del plasma, quindi un sistema a Q = 1 si raffredderà senza riscaldamento esterno. Con i combustibili tipici, l'autoriscaldamento nei reattori a fusione non dovrebbe corrispondere alle fonti esterne fino ad almeno Q = 5. Se invece Q aumenta oltre questo punto, l'aumento dell'autoriscaldamento alla fine elimina la necessità di riscaldamento esterno. A questo punto la reazione diventa autosufficiente, condizione chiamata accensione. L'accensione corrisponde a Q infinito ed è generalmente considerata altamente desiderabile per progetti pratici di reattori a fusione nucleare. Nel tempo, diversi termini correlati sono entrati nel lessico della fusione. L'energia che non viene catturata all'interno del combustibile può essere catturata esternamente per produrre elettricità. Quell'elettricità può essere usata per riscaldare il plasma a temperature operative. Un sistema autoalimentato in questo modo viene indicato come funzionante a pareggio tecnico. Operando al di sopra del pareggio tecnico, una macchina produrrebbe più elettricità di quanta ne usi e potrebbe vendere quell'eccesso. Uno che vende elettricità a sufficienza per coprire i propri costi operativi è talvolta noto come pareggio economico. Inoltre, i combustibili da fusione, in particolare il trizio, sono molto costosi, quindi molti esperimenti vengono eseguiti su vari gas di prova come idrogeno o deuterio. Si dice che un reattore funzionante con questi combustibili sta operando a pareggio estrapolato qualora raggiunga le condizioni di pareggio una volta introdotto il trizio. Fino al 2017, il valore record di Q è stato ottenuto dal tokamak JET del Regno Unito, con Q = (16 MW)/(24 MW) ≈ 0.67, raggiunto per la prima volta nel 1997. Il valore più alto per pareggio estrapolato è stato pubblicato dal tokamak di test , con valore Qext = 1.25, migliorando leggermente il 1.14 del JET. ITER era stato inizialmente concepito per raggiungere l'accensione, ma attualmente è progettato per ottenere un Q = 10, producendo 500 MW di potenza da fusione da 50 MW di potenza termica introdotta. (it)
  • Коефіціє́нт відтво́рення термоя́дерної ене́ргії (Q) — співвідношення загальної енергії, яка виділяється у процесі реакції керованого термоядерного синтезу, що зрівноважує загальну енергію витрачену на запуск та підтримання реакції. Позначається символом Q. Реакція термоядерного синтезу стає самодостатньою і незбитковою, коли Q ≥ 1. Щоб отримати коефіцієнт Q слід енергію, виділену в процесі термоядерної реакції поділити на енергію витрачену для розігріву плазми: Q = Pfusion/Pheat. Метою «запалення», тобто досягнення стану плазми, що нагріває сама себе за допомогою термоядерної енергії без сторонніх енергетичних затрат, є досягнення безмежного Q. Хоча, запалення не є необхідною умовою для практичного застосування в реакторі. З іншого боку, досягнення Q = 20 потребує якості утримання майже такої ж як і потрібно для досягнення запалення, відповідно досі актуальним залишається критерій Лоусона. Очікується, що в міжнародному експериментальному реакторі ITER, це співвідношення буде дорівнювати Q = 10. На демонстраційній термоядерній електростанції DEMO планується досягти Q = 25. (uk)
  • 聚变能量增益因子(英語:fusion energy gain factor),通常用符号Q表示,是核聚变反应所产生能量与维持反应器等离子体稳态的输入装置能量之比。当Q = 1 ,聚变反应所释放的功率等于维持反应所需的加热功率时, 称为收支平衡,在某些地方也被称为科学收支平衡。 自热是获得能量增益的关键,聚变反应释放出的部分能量可能被燃料重新捕获,从而导致自热。大多数聚变反应会至少在无法在等离子体中捕获的形式下释放一部分能量,因此Q = 1的系统无需外部加热即可冷却。使用典型聚变燃料时,在至少达到Q = 5之前,聚变反应堆中的自热预计不会达到反应堆输入功率。如果Q增加到Q = 5以上,自热的增加令反应堆不再需要外部加热输入能量以维持反应。在此之后,聚变反应开始自我维持,这种情形被称为聚变点火。点火后反应堆Q为无限大,通常被认为是聚变反应堆的理想设计情景。 随着时间的推移,一些相关的术语进入了核聚变词典。不参与聚变反应自热的能量可以从外部捕获,以产生电力。这些电力可以用来将等离子体加热到工作温度。以这种方式自供电的系统被称为运行在工程收支平衡状态。在高于工程收支平衡的情景下运行时,反应堆所产生的电能将超过其使用的电能,因此多余的电能可以被出售。可出售足够电力以支付反应堆运营成本的状态被称为经济收支平衡。此外,核聚变燃料,特别是氚价格高昂,所以很多实验都是用氢或氘等各种试验气体进行。如果这类实验用反应堆在使用氚作为燃料下理论上可以达到收支平衡,则该反应堆被称为推断收支平衡。 截至2017年,Q的记录由英国的歐洲聯合環狀托卡马克反应堆(JET)保持,为Q =(16MW)/(24MW)≈ 0.67,在1997年首次达到。国际热核聚变实验反应堆(ITER)最初的设计是为了达到点火水平,但目前设计可达到Q = 10,用50兆瓦的输入热功率产生500兆瓦的聚变功率。推断收支平衡的最高记录则由日本的JT-60托卡马克反应堆保持,Qext = 1.25。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software